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Abstract—Considering an arbitrary undirected n-vertex graph with nonnegative edge weights, we
seek to construct a spanning tree minimizing the sum over all vertices of the maximal weights of the
incident edges. We find some particular cases of polynomial solvability and show that the minimal
span whose edge weights lie in the closed interval [a, b] is a

(
2 − 2a

a+b+2b/(n−2)

)
-approximate

solution, and the problem of constructing a 1.00048-approximate solution is NP-hard. We propose
a heuristic polynomial algorithm and perform its a posteriori analysis.
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INTRODUCTION

Many communication networks use wireless communication for information exchange. The energy
losses at their elements are proportional to ds with s ≥ 2, where d is the transmission distance [3].
In some networks, for instance in wireless sensor networks, the elements (sensors) have restricted
energy reserves, and efficient energy use by them makes it possible to extend the network’s lifetime
[1, 10, 13, 14]. To save on energy use, the modern sensors are capable of adjusting the radio transmission
distance. This leads to the problem of determining the transmission distance for every element of the
network so that to minimize the total energy required to keep the graph connected. If we assume that
the radio signal propagates in the same way in all directions then all elements in the transmission zone
(not beyond the transmission distance) receive the message. In this case, we may assume that the
communication network, a spanning subgraph whose edges carry the transmission, is a complete graph
[3, 6, 9, 10]. However, it is not always true that the signal propagates in the same way in all directions
and at all distances. Therefore, in general, we should assume that the communication graph G = (V,E)
can be an arbitrary spanning subgraph and the energy losses for the transmission along the edges may
vary. Thus, if cij ≥ 0 stands for the energy loss incurred in data transmission from i ∈ V to j ∈ V then,
in the connected subgraph T = (V,E′) with E′ ⊆ E, the energy loss at the vertex i ∈ V equals

Ei(T ) = max
j|(i,j)∈E′

cij .

The goal of this article is to study the problem of constructing a spanning subgraph T for which the
sum

∑
i∈V Ei(T ) is minimal. Without loss of generality, we may assume that T is a spanning tree.

As we noted above, the problems of this kind arise, for instance, in wireless sensor networks, when
the location of sensors is known and we are required to determine an energy-efficient graph connecting
all sensors [13]. It is customary in the literature to consider as the communication graph of a sensor
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network a spanning tree of minimal weight P when the weight of the edge joining a pair of vertices
equals the squared distance between these vertices [13]. However, the minimal span is not always the
optimal communication graph of a sensor network.

The problem of determining the transmission distance of every vertex lying in a Eucludean space in
order to find a strongly connected graph in which the total energy expense on communication is minimal
was studied in [9]. In particular cases when the vertices lie on a straight line, some polynomial algorithms
are proposed for solving this problem. The NP-hardness of the problem in the three-dimensional
Euclidean space is established.

The following algorithms are proposed in [3]: an algorithm with asymptotic accuracy 5/3; a polyno-
mial algorithm which constructs an 11/6-approximate solution; an exact algorithm, the branches-and-
boundaries method, using a new formulation of the problem as an integer linear programming problem.

The problem of determining the power of radio transmitters for data transmission at two distances,
“short” and “long”, was considered in [6] and shown to be NP-hard. A polynomial algorithm is proposed
which constructs a solution with the number of long-distance transmitters at most 11/6 of their number
in the optimal solution. An exponential 9/5-approximate algorithm is also proposed. These results are
obtained in the cases that the elements lie in an Euclidean space, but they are easy to generalize to
an arbitrary metric.

In this article, we find some particular cases of polynomial solvability of the problem. We show that the
problem of constructing a 1.00048-approximate solution is NP-hard. We propose an effective heuristic
algorithm and run a simulation demonstrating its high efficiency.

1. STATEMENT OF THE PROBLEM AND COMPLEXITY ANALYSIS

Consider a simple undirected weighted graph G = (V,E) with vertex set V , |V | = n, and edge set E.
Let cij ≥ 0 denote the weight of the edge (i, j) ∈ E. We are to find a spanning tree T ∗ for G which is the
solution to the problem

W (T ) =
∑

i∈V

max
j∈Ni(T )

cij → min
T

, (1)

where Ni(T ) stands for the set of vertices adjacent to vertex i in T . In the English literature, this
problem is usually called the Min-Power Symmetric Connectivity Problem [3]. Henceforth, we call
every admissible solution to (1), which is a spanning tree, a communication tree (or a subgraph).

The proofs that this problem is NP-hard in the cases that the network elements lie in the three-
dimensional Euclidean space appeared in [9], and in the two-dimensional Euclidean space, in [5]. In both
cases, the edge weight corresponds to the squared Euclidean distance between the corresponding
vertices. Naturally, this implies the NP-hardness of the problem in general, but we need the polynomial
reduction presented below, which also proves the NP-hardness of the problem under consideration in
the strong sense, to ascertain the approximability bounds of the problem.

Lemma 1. The minimal vertex covering problem reduces polynomially to Problem (1).

Proof. Let us polynomially reduce t he NP-hard, in the strong sense, minimal vertex covering problem
to a particular case of Problem (1). In the minimal vertex covering problem, given a graph G = (V,E)
with |V | = n and |E| = m, we seek a subset V ′ ⊆ V of vertices of minimal cardinality such that, for
every edge (i, j) ∈ E, at least one of the vertices i and j belongs to V ′.

Consider the auxiliary minimal covering problem in which we are given some sets of objects J and
elements I, as well as the parameters

aij =

{
1, if i ∈ I covers j ∈ J,

+∞, otherwise.

We seek a subset I ′ ⊆ I of minimal cardinality covering all objects.
The minimal vertex covering problem polynomially reduces to the minimal covering problem. In order

to verify this, it suffices to put J = E and I = V and assume that the element i ∈ I covers the object
e = (p, q) ∈ J whenever i = p or i = q.
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Fig. 1. Example of Problem (1) obtained from an individual minimal covering problem

Given an arbitrary minimal covering problem, construct the graph G = (V,E) with the vertex set
V = {0} ∪ I ∪ J and edge set

E =
{
(0, i) | i ∈ I

}
∪

{
(i, j) | aij = 1, i ∈ I, j ∈ J

}
.

Define the edge weights c0i = 0 and cij = aij for i ∈ I and j ∈ J . Then, in every spanning tree T of G,
for every j ∈ J , we have maxi∈Nj(T ) cij = 1, while, for i ∈ I, either maxj∈Ni(T ) cij = 1 if i is joined to
some vertex j ∈ Ni(T ) or maxj∈Ni(T ) cij = 0 if i is joined only to vertex 0. A solution T ∗ to Problem (1),
to which we refer as Problem P, determines a minimal covering I ′ ⊆ I containing the vertices in I
adjacent to the vertices in J in the tree T ∗.

Thus, we have polynomially reduced the minimal covering problem, which is NP-hard in the strong
sense, to a particular case of Problem (1). The proof of Lemma 1 is complete.

Fig. 1 depicts an example of Problem (1) constructed from an individual minimal covering problem
using the polynomial reduction just described. The bold lines highlight an admissible solution to the
problem, which determines a covering of all elements of J by the elements of I.

2. PARTICULAR CASES
Consider some particular cases of the problem arising in various applications [1, 13].

Lemma 2. If the graph G is complete and the edge weights take two values, cij ∈ {a, b} with
a < b, then Problem (1) is polynomially solvable.

Proof. Construct a minimal span with respect to the total weight of the included edges as follows:
Start with the trivial graph (V, ∅). Add the maximal number of edges of weight a to obtain acyclic
connected components. Let m be the number of these connected components. To construct a spanning
tree, we have to join these by m− 1 edges. Choose one vertex in every connected component and connect
them by weight b edges to obtain a spanning tree.

The resulting minimal span in this case is the optimum of Problem (1) since in it the number of
vertices adjacent to weight b edges is minimal. The proof is over.

The two other simple cases of optimal tree construction are worth mentioning:
Case 1. Take two minimal values a1 < a2 of edge weights in a graph G. Add to the trivial tree (V, ∅)

an edge of length a1 to obtain the minimal number of acyclic connected components. If we can choose
one vertex in every connected component and join these vertices by edges of length a2 then the resulting
tree is the optimal solution to Problem (1).

Case 2. Take the minimal weight a of edges in a graph G and suppose that the weights of all edges in
a minimal span P equal a. Then P is the optimal solution to Problem (1).

Remark 1. Regular coverings of a plane by disks of two radii are considered in [1]. The minimal spans
connecting the sensors contain only edges of minimal length. Hence, a minimal span yields an optimal
communication tree. On the other hand, [13] proposed a covering with disks of three radius (model III).
The minimal span connecting the sensors in model III is not the optimal communication tree, and the
conclusions of the authors of [13] concerning the energy efficiency of the link are false.
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3. SOME ACCURACY ESTIMATES FOR POLYNOMIAL ALGORITHMS

Let us estimate the proximity of a minimal span to the optimal solution to Problem (1).

Lemma 3. Given a spanning tree T , we have
∑

(i,j)∈T

cij ≤
∑

i∈V

max
j∈Ni(T )

cij ≤ 2
∑

(i,j)∈T

cij . (2)

Proof. The left inequality is obvious: once we have chosen an arbitrary vertex as the root of T , every
vertex i has one predecessor vertex p(i) on the way from the root (the root is its own predecessor), and
we can express the weight of the tree as

∑

(i,j)∈T

cij =
∑

i∈V

ci,p(i) ≤
∑

i∈V

max
j∈Ni(T )

cij .

The right inequality in (2) follows from the fact that every edge is incident to two vertices, and
consequently, its weight can occur in the objective function at most twice. The proof is over.

Let T ∗ denote the solution to Problem (1); thus, W (T ∗) = W ∗ = minT W (T ), while

C =
∑

(i,j)∈P

cij = min
T

∑

(i,j)∈T

cij

is the weight of the minimal span P . Order the edges included into P according to their weights:

a = c1 ≤ c2 ≤ · · · ≤ cn−1 = b.

Denote the numbers of edges of the tree P whose weights are counted in the objective function W (P )
two, one, and zero times by k, l, and m respectively. Then k + l + m = n − 1, while 2k + l = n. This
implies l = n − 2k and m = k − 1. Hence,

W (P ) ≤ 2
n−1∑

i=n−k

ci +
n−k−1∑

i=n−k−l

ci = 2
n−1∑

i=n−k

ci +
n−k−1∑

i=k

ci

= 2C −
(

k−1∑

i=1

ci +
n−k−1∑

i=1

ci

)

≤ 2C − a(n − 2).

Therefore,

ε(P ) =
W (P )
W (T ∗)

≤ 2 − a(n − 2)
C

= ε1(C).

On the other hand, ε(P ) ≤ bn/C = ε2(C). The weight C of the minimal span P is unknown beforehand.
However, ε1(C) increases, while ε2(C) decreases, and consequently, there is C ∈ [a(n − 1), b(n − 1)]
such that ε1(C) = ε2(C).

We have C = ((a + b)(n − 2) + 2b)/2 and

ε(P ) ≤ min
C

{ε1(C), ε2(C)} ≤ ε1(C) = ε2(C) = 2 − 2a
a + b + 2b/(n − 2)

.

This establishes
Theorem 1. If the weights of the edges in the minimal span P belong to the closed interval

[a, b] then we have the attainable estimate

ε(P ) =
W (P )
W (T ∗)

≤ 2 − 2a
a + b + 2b/(n − 2)

, (3)
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and

ε(P ) ≤ 2b
a + b

(4)

as n → +∞.

The resulting estimate is attainable and equals 2, for instance, in the case that the weights of the
edges included into the minimal span P less than two times are zero. If the network elements are points
in a Euclidean space then the distance between distinct points cannot be zero. However, estimates
(3) and (4) are attained in the limit. In order to verify this, it suffices to consider the example in Fig. 5
of [3].

The covering model III of [13] uses as a communication network a minimal span connecting the nodes
of an infinite lattice which includes edges of weights c1 ≈ 0.071, c2 ≈ 0.095, and c3 ≈ 1.071. Hence,
according to (4), the relative error of the minimal spanning tree PIII in the limit equals

W (PIII) − W (T ∗)
W (T ∗)

≤ 2 · 1.071
1.142

− 1 ≈ 0.87.

Recall that, in the minimal vertex covering problem, we are given a graph G = (V,E) with |V | = n
and |E| = m. Lemma 1 implies that every minimal vertex covering problem reduces to a particular case
of Problem (1), namely, Problem P.

Suppose that a polynomial algorithm A constructs a Q-approximate solution to Problem P. Thus,

1 ≤ W (TA)
W ∗ ≤ Q, (5)

where W ∗ = W (T ∗) = n∗ + m is the optimal value of the objective function of Problem P, in which
n∗ elements of the set I cover all objects, while W (TA) = n′ + m is the value of the functional of
Problem P on the tree constructed by Algorithm A.

Suppose that the problem of constructing an R-approximate solution, with R > 1, to the minimal
vertex covering problem is NP-hard. Then

n′

n∗ =
W (TA) − m

W ∗ − m
> R.

We infer from (5) that W (TA) ≤ QW ∗. Hence,

QW ∗ − m > R(W ∗ − m), Q > R − (R − 1)m/W ∗.

Suppose that the degree of the graph G, which is the maximal degree of its vertices, equals Δ ≤ k. It
is known [4] that the minimal vertex covering problem is NP-hard for every class of graphs with k ≥ 3.
Since, in this case, every element covers at most k objects, it follows that n∗ ≥ m/k. Consequently,

W ∗ ≥ m/k + m, Q > 1 + (R − 1)/(k + 1).

In general R depends on k. For instance, if P
=NP then, for k = 5, there exists no 1.0029-approximate
polynomial algorithm for the minimal vertex covering problem [4] (that is, R = 1.0029). Hence, Q >
1.00048, and therefore we have proved

Theorem 2. If P
=NP then there exists no 1.00048-approximate polynomial algorithm for
Problem (1).
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4. A HEURISTIC ALGORITHM

Here we propose a method for solving Problem (1) approximately. In short, it amounts to the
following: To begin with, we construct a lower bound for the optimum of Problem (1) by solving
the minimal span problem in a graph with special edge weights. Then we apply a local improvement
procedure to the minimal span found in calculating the lower bound. The resulting tree is the required
approximate solution to Problem (1).

Instead of a graph G = (V,E) consider the complete n-vertex directed graph Kn, in which every pair
i, j ∈ V of vertices are joined by both an arc (i, j) of weight cij ≥ 0 and an arc (j, i) of weight cji ≥ 0.
Put

Ni(T ) = {j ∈ V | (i, j) ∈ T}.

Put

ci = min
j∈V, j �=i

cij , for i ∈ V, c =
∑

i∈V

ci,

as well as aij = cij − ci for i, j ∈ V with i 
= j. Then the functional of (1) becomes

W (T ) = c +
∑

i∈V

max
j∈Ni(T )

aij. (6)

Consider a vertex i of Kn. Order the remaining vertices so that the weights aij are nondecreasing:
aij1 = 0 ≤ aij2 ≤ · · · ≤ aijn−1 . Refer to the nondecreasing function gi(k) = aijk

, k = 1, . . . , n − 1, as
the weight function of vertex i. Take some nonnegative nondecreasing minorant hi(k) of gi(k):

hi(1) = 0 ≤ hi(2) ≤ · · · ≤ hi(n − 1), hi(k) ≤ gi(k), k = 1, . . . , n − 1.

Let zij denote the increments of the minorants hi relative to the arcs (i, j) and calculated as zij1 = 0 and
zijk

= hi(k) − hi(k − 1) for k = 2, . . . , n − 1. Recalling (6) and the notation introduced, we obtain

W (T ) − c =
∑

i∈V

max
jk∈Ni(T )

gi(k) ≥
∑

i∈V

max
jk∈Ni(T )

hi(k) ≥
∑

i∈V

∑

k|jk∈Ni(T )

zijk
=

∑

(i,j)∈T

(zij + zji). (7)

Let (bij) denote the symmetric matrix with entries bij = bji = zij + zji. Using (7), we obtain the
following lower bound L for the optimal values of the objective function of Problem (1):

W ∗ = min
T

W (T ) ≥ c + min
T

∑

(i,j)∈T

bij = L. (8)

Calculating L amounts to solving the minimal spanning tree problem for the graph Kn with the
matrix (bij) of edge weights.

In calculating the lower bound (8) we propose to take as the minorants hi the convex hulls of the
weight functions gi for i ∈ V . According to (2), the minimal weight C of the span in the initial graph
with edge weights cij is another lower bound for the functional of (1). Hence, we can take max{C,L} as
a lower bound for the objective function of Problem (1).

Observe that both C and L can be the best (largest) lower bound. Indeed, consider the following
example: Place the network elements at the points on the plane with coordinates

(9, 0), (0, 0), (9, 1), (18, 0), (9, 11).

Assign to each edge (i, j) the weight cij equal to the squared distance between the points i and j. As the
minorants for the functions gi take their convex hulls. Then the tree

T = {{1, 3}, {2, 3}, {3, 4}, {3, 5}},
which is the span of minimal weight for the complete graph with weights bij , is the optimal solution to
the problem. Moreover, the weight of T (the lower bound L) coincides with the value of the objective
function: W (T ) = L = 365. Consider the minimal weight span

P = {{1, 2}, {1, 3}, {1, 4}, {3, 5}}
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for the graph with weights cij . Then W (P ) = 443 > W (T ), while C = 263 < L. This example demon-
strates that the passage to weights bij can prove useful both for improving the lower bound and for
constructing a more accurate solution to Problem (1). In this example the lower bound L is 1.68 times
the lower bound equal to the weight of the minimal span in the initial graph.

Now we propose a local improvement procedure applicable to an arbitrary spanning tree.
Consider an arbitrary spanning tree T and some numerical parameter d. In order to describe the local

improvement procedure for T , we introduce some notation: Denote the current record tree by R and the
tree obtained as the output of the procedure, by D(T, d).

Initial step. Refer to an edge (i, j) ∈ T as black whenever min{aij , aji} ≥ d, and as white other-
wise. If all edges of the tree T turn out of one color then the algorithm stops, and the result is D(T, d).

Suppose that the edges of T are of different colors. Denote its connected components formed by the
white edges by S1, . . . , SM . Put R = T .

In a loop for m = 1, . . . ,M do

General step. Take the tree R and the component Sm. Denote by B the set of black edges incident
to the vertices in Sm, and by N , the set of vertices incident to the edges in B and lying outside Sm.

For s ∈ Sm, put Es = {(v, s), v ∈ N} and Ts = (R \ B) ∪ Es. Choose from the trees R and Ts for
s ∈ Sm the best one and assign it the new R; that is, put

R = arg min
{
W (R), arg min

s∈Sm

W (Ts)
}
.

Final step. Once the loop over m is complete, put D(T, d) = R.

Consider the minimal tree T obtained in calculating the lower bound (8). Put

di = max
j∈Ni(T )

aij , i ∈ V.

The tree

P = arg min{W (D(T, di)), i ∈ V }
is the required approximate solution to Problem (1).

5. SIMULATION

To analyze the effectiveness of the heuristic algorithm of Section 4, we ran a simulation placing the
network elements randomly and uniformly inside the square of side length 100.

Denote by T1 the minimal spanning tree on the graph with weights cij , and by T2, the minimal
spanning tree on the graph with weights bij ; we determined them using the convex hulls of the
functions gi as the minorants. Denote by T3 the minimal spanning tree on the graph with weights bij ,
which we determined using the functions gi themselves as the minorants. Denote the weights of the
trees T1, T2, and T3 by L1 L2, and L3.

We ran the experiment for n = 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, and 90, and 100. For the same
dimension we generated 50 distinct examples. For each example generated we started the algorithm with
each of the three trees T1, T2, and T3 as the initial tree. As the lower bounds we took max{L1, L2, L3}.

In order to construct the optimal solution, use the representation by a Steiner tree, proposed in [7],
and write Problem (1) as an integer linear programming problem. To formulate the problem, assign one
vertex of the graph (vertex 1) to be the root of the required tree T and assume that all arcs in T are
directed away from the root. Put Vj = {i ∈ V | (i, j) ∈ E}. Denote by ui the number of arcs from the
root to the vertex i in T (and furthermore, u1 = 0). Put xij = 1 if the arc (i, j) belongs to T and xij = 0
otherwise. Then we can express the problem as follows:

∑

i∈V

Ci → min
x,u,C

, (9)

cijxij ≤ Ci, cijxij ≤ Cj, i ∈ V, j ∈ V \ {1}, (10)
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Table 1. Average values of relative accuracy

n ε(A(P )) ε(A(Q)) ε(A(T1)) ε(A(T2)) ε(A(T3))

5 1.02323 1.02199 1.02587 1.02323 1.02413

10 1.02046 1.02026 1.02545 1.02252 1.22374

15 1.03056 1.02703 1.02619 1.04297 1.45522

20 1.03592 1.03444 1.03303 1.08635 1.7503

∑

i∈Vj

xij = 1, j ∈ V \ {1}, (11)

1 − n(1 − xij) ≤ uj − ui ≤ 1 + n(1 − xij), (i, j) ∈ E, (12)

xij ∈ {0, 1}; ui ∈ {1, . . . , n − 1}, i 
= 1; u1 = 0. (13)

To solve problem (9)–(13) for small dimensions n ≤ 20 we used the CPLEX package made available
to the authors in the framework of the IBM Academic Initiative.

The branches-and-boundaries method of [3] is based on a different statement of Problem (1) as
an integer linear programming problem. This method constructs the optimal solution on 30–40 vertices
in acceptable time. The CPLEX package for (9)–(13) enabled us to solve Problem (1) on at most 20
vertices. For n > 20, we estimated the relative accuracy of the algorithm by

R =
W (A)

max {L1, L2, L3}
.

In order to demonstrate the results of our simulation, put

P = arg max{L1, L2, L3}, Q = arg min
T∈{T1,T2,T3}

{W (A(T ))}.

Denote the improvement of the solution by the algorithm by

I(T ) = 100% · W (T ) − W (A(T ))
W (T )

.

Tables 1–4 indicate that on average the algorithm constructs a 1.025-approximate solution for small
dimensions n ≤ 20 and a 1.21-approximate solution for n > 20. For small dimensions (n ≤ 10) the local
improvement algorithm with T2 as the initial tree on average constructs a better solution than the same
algorithm with the initial tree T1, while, for n = 5, the quantity L2 exceeds L1 on average by more than
10%. For n ≥ 30, the quantity L1 is always the greatest of lower bounds for Problem (1), and we obtain
the best solution if the initial tree is T1; furthermore, for large n, in the case of an unfortunate choice of the
initial tree, the value of the objective function on the resulting solution can exceed the optimal value by
a factor of more than 5. We should also note that the estimate of the algorithm’s quality changes slightly
as n grows in the case that we choose T1 as the initial tree, while T2 and T3 are reasonable choices only
for small values of n.

In Table 4 we use the following notation: P1 is the share of cases with L1 = max{L1, L2, L3}, while P2

is the share of cases with L2 = max{L1, L2, L3}, in percent, O(T ) is the share of cases when algorithm A
constructs the optimal solution with the initial tree T , in percent.

The graphs in Fig. 2 reflect the change in the running time of the proposed algorithm and CPLEX
with the growth of dimension. Already for n = 20 the average running time of the CPLEX package is
quite long: about 250 seconds. Fig. 3 depicts the changing share of the improvement of the solution by
the algorithm with the growth of n for the choice of P as the initial tree. Observe that the data in Table 4
and Fig. 3 imply that, for n ≥ 20, the algorithm improves the solution T1 by 2–2.5% on average. Fig. 4
depicts the values of relative accuracy for all generated examples for the choice of T1 as the initial tree.
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Table 2. Average values of upper bounds for relative accuracy

n R(A(P )) R(A(Q)) R(A(T1)) R(A(T2)) R(A(T3))

30 1.23717 1.23072 1.23717 1.27233 2.63508

40 1.2309 1.2309 1.2309 1.45989 3.10877

50 1.21145 1.21145 1.21145 1.44256 3.40106

60 1.20451 1.20451 1.20451 1.53906 3.77661

70 1.20162 1.20162 1.20162 1.66828 4.22862

80 1.2069 1.2069 1.2069 1.74425 4.57752

90 1.20338 1.20338 1.20338 1.84641 4.94562

100 1.20327 1.20327 1.20327 1.90425 5.16939

Table 3. Average values of lower bounds and solutions constructed by the algorithm and
the CPLEX package (W ∗ is the value of the objective function on the optimal solution)

n L1 L2 L3 W ∗ W (A(T1)) W (A(T2)) W (A(T3))

5 137.831 151.929 141.164 196.182 201.213 200.661 201.205

10 205.192 200.587 183.04 260.276 267.26 266.347 318.325

15 255.102 244.644 217.732 314.196 322.573 327.784 455.07

20 306.074 287.666 253.887 370.694 383.06 402.655 645.289

30 380.788 353.942 313.516 — 470.951 484.616 999.965

40 431.685 387.242 340.200 — 531.051 629.013 1339.52

50 486.356 435.735 386.743 — 588.903 701.197 1652

60 528.040 466.710 414.695 — 635.942 812.682 1994.48

70 570.238 506.142 451.653 — 685.088 950.265 2409.22

80 606.016 528.798 472.553 — 731.176 1055.71 2769.35

90 640.283 555.639 497.559 — 770.364 1181.28 3160.63

100 671.691 577.833 519.057 — 808.079 1278.5 3469.25

6. CONCLUSIONS

In this article we gave a mathematical formulation of the NP-hard, in the strong sense, problem of
combinatorial optimization which adequately reflects the problem of constructing communication net-
works in some technical systems (for instance, in wireless sensor networks). We found particular cases
of polynomial solvability of the problem. We showed that the minimal span whose edge weights lie on the
closed interval [a, b] is a

(
2 − 2a

a+b+2b/(n−2)

)
-approximate solution and that the problem of constructing

a 1.00048-approximate solution is NP-hard. We proposed a heuristic polynomial algorithm. We ran
a simulation demonstrating the high effectiveness of the algorithm proposed. On average it constructed
a 1.025-approximate solution for small dimensions n ≤ 20 and a 1.21-approximate solution for n > 20.
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Table 4.

n P1 P2 O(P ) O(Q) O(T1) O(T2) O(T3)

5 22 64 62 64 60 62 60

10 52 48 28 32 30 28 2

15 76 24 12 18 18 6 0

20 88 12 2 0 2 2 0

30 100 0 — — — — —

40 100 0 — — — — —

50 100 0 — — — — —

60 100 0 — — — — —

70 100 0 — — — — —

80 100 0 — — — — —

90 100 0 — — — — —

100 100 0 — — — — —
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Fig. 2. Average running time of algorithm A (a) and the CPLEX package (b)

The reason for this discontinuity is that to estimate the quality of the algorithm for large dimensions we
used a lower bound instead of the optimal values of the objective function.
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